ABSTRACT: A broader approach to research in human development is proposed that focuses on the progressive accommodation, throughout the life span, between the growing human organism and the changing environments in which it actually lives and grows. The latter include not only the immediate settings containing the developing person but also the larger social contexts, both formal and informal, in which these settings are embedded. In terms of method, the approach emphasizes the use of rigorously designed experiments, both naturalistic and contrived, beginning in the early stages of the research process. The changing relation between person and environment is conceived in systems terms. These systems properties are set forth in a series of propositions, each illustrated by concrete research examples.

This article delineates certain scientific limitations in prevailing approaches to research on human development and suggests broader perspectives in theory, method, and substance. The point of departure for this undertaking is the view that, especially in recent decades, research in human development has pursued a divided course, with each direction tangential to genuine scientific progress. To corrupt a contemporary metaphor, we risk being caught between a rock and a soft place. The rock is rigor, and the soft place relevance. As I have argued elsewhere (Bronfenbrenner, 1974; Note 1), the emphasis on rigor has led to experiments that are elegantly designed but often limited in scope. This limitation derives from the fact that many of these experiments involve situations that are unfamiliar, artificial, and short-lived and that call for unusual behaviors that are difficult to generalize to other settings. From this perspective, it can be said that much of contemporary developmental psychology is the science of the strange behavior of children in strange situations with strange adults for the briefest possible periods of time.

Partially in reaction to such shortcomings, other workers have stressed the need for social relevance in research, but often with indifference to or open rejection of rigor. In its more extreme manifestations, this trend has taken the form of excluding the scientists themselves from the research process. For example, one major foundation has recently stated as its new policy that, henceforth, grants for research will be awarded only to persons who are themselves the victims of social injustice. Other, less radical expressions of this trend involve reliance on existential approaches in which “experience” takes the place of observation and analysis is foregone in favor of a more personalized and direct “understanding” gained through intimate involvement in the field situation. More common, and more scientifically defensible, is an emphasis on naturalistic observation, but with the stipulation that it be unguided by any hypotheses formulated in advance and uncontaminated by structured experimental designs imposed prior to data collection.

This article represents a synthesis and further development of ideas originally presented by the author in two addresses at successive annual meetings of the American Psychological Association. The first was a presidential address to the Division of Personality and Social Psychology in 1974; the second was an invited Master Lecture in 1975.

The article grew out of work carried out by the author as a Belding Fellow of the Foundation for Child Development. Appreciation is expressed to the Foundation and its staff, in particular to Orville Brim and Heidi Sigal. The author is also indebted to the following colleagues for their constructive criticisms of earlier drafts of the manuscript: Irwin Altman, Melvin Kohn, Eleanor Maccoby, Rudolf Moos, John Weiss, and Sheldon White.

Requests for reprints should be sent to Urie Bronfenbrenner, Department of Human Development and Family Studies, Cornell University, Martha Van Rensselaer Hall, Ithaca, New York 14853.

\(^1\) In a recent survey of all studies in child development (\(N = 902\)) published between 1972 and 1974 in three prominent research journals (Child Development, Developmental Psychology, Journal of Genetic Psychology), Larson (Note 2) found that 76% of all the investigations had employed the experimental laboratory paradigm; the next highest category was research using pencil-and-paper techniques (17%); observational studies were in lowest place (8%).
The orientation proposed here rejects both the implied dichotomy between rigor and relevance and the assumed incompatibility between the requirements of research in naturalistic situations and the applicability of structured experiments at an early stage in the scientific process. Specifically, it rejects as spurious the argument that, because naturalistic observation preceded experimentation in both the physical and biological sciences, this progression is necessarily the strategy of choice in the study of human behavior and development. Such an interpretation mistakes a historical sequence for a causal one and represents yet another instance of the logical pitfalls inherent in the ever-seductive post hoc, propter hoc inference. In my view, 20th-century science possesses research strategies that, had they been available to the 19th-century naturalists, would have enabled them to leapfrog years of painstaking, exhaustive description in arriving at a formulation of biographical principles and laws. This is not to imply that taxonomy is not an essential scientific task but only to assert that a phase of comprehensive observation, recording, and classification may not be a necessary condition for making progress in the understanding of process, and that the early application of experimental paradigms may in fact lead to more appropriate taxonomies for achieving the requisite work of systematic description.

There is yet another restriction unnecessarily imposed on the strategy of naturalistic observation, particularly as applied to the human case by its principal advocates—the ethologists (Jones, 1972; McGrew, 1972) and the psychological ecologists of the Kansas school (Barker & Schoggen, 1973; Barker & Wright, 1954). Both groups have adapted to the study of human behavior a model originally developed for the observation of subhuman species. Implicit in this model is a concept of the environment that may be quite adequate for the study of behavior in animals but that is hardly sufficient for the human case. Specifically, it is limited to the immediate, concrete setting containing the living creature and focuses on the observation of the behavior of one or, at most, two beings at a time in only one setting. As I shall argue below, the understanding of human development demands going beyond the direct observation of behavior on the part of one or two persons in the same place; it requires examination of multiperson systems of interaction not limited to a single setting and must take into account aspects of the environment beyond the immediate situation containing the subject.

Specifically, in this essay, I propose first an expansion and then a convergence of both the naturalistic and the experimental approaches—more precisely, an expansion and convergence in the theoretical conceptions of the environment that underlie each of them. I refer to this evolving scientific perspective as the ecology of human development. The major dimensions of this perspective are outlined below.

Terms of Reference

Let us begin with some definitions of focus, context, and method.

Definition 1. The ecology of human development is the scientific study of the progressive, mutual accommodation, throughout the life span, between a growing human organism and the changing immediate environments in which it lives, as this process is affected by relations obtaining within and between these immediate settings, as well as the larger social contexts, both formal and informal, in which the settings are embedded.

The conception of the environment implicit in the foregoing definition is considerably broader and more differentiated than that found in psychology in general and in developmental psychology in particular. Specifically:

Definition 2. The ecological environment is conceived topologically as a nested arrangement of structures, each contained within the next. (For the purpose of describing these successive levels, I shall employ a terminology adapted from Brim [1975].)

1. A **microsystem** is the complex of relations between the developing person and environment in an immediate setting containing that person (e.g., home, school, workplace, etc.). A setting is defined as a place with particular physical features in which the participants engage in particular activities in particular roles (e.g., daughter, parent, teacher, employee, etc.) for particular periods of time. The factors of place, time, physical features, activity, participant, and role constitute the elements of a setting.

In psychological research, especially in the laboratory, these elements are often given short shrift. In particular, roles other than those of experimenter and subject that might in fact be operative
for the participants are disregarded, and behavior is examined primarily in terms of process (e.g., modes of interaction, reinforcement schedules, response rates) rather than content (e.g., the nature and purpose of the task). So that this substantive aspect is not overlooked, I use the term activity rather than behavior to identify this essential feature of the microsystem.

2. A **mesosystem** comprises the interrelations among major settings containing the developing person at a particular point in his or her life. Thus, for an American 12-year-old, the mesosystem typically encompasses interactions among family, school, and peer group; for some children, it might also include church, camp, or workplace, although the last would be less common in the United States than in some other societies. In sum, stated succinctly, a mesosystem is a system of microsystems.

3. An **exosystem** is an extension of the mesosystem embracing other specific social structures, both formal and informal, that do not themselves contain the developing person but impinge upon or encompass the immediate settings in which that person is found, and thereby influence, delimit, or even determine what goes on there. These structures include the major institutions of the society, both deliberately structured and spontaneously evolving, as they operate at a concrete local level. They encompass, among other structures, the world of work, the neighborhood, the mass media, agencies of government (local, state, and national), the distribution of goods and services, communication and transportation facilities, and informal social networks.

A **macrosystem** differs in a fundamental way from the preceding forms in that it refers not to the specific contexts affecting the life of a particular person but to general prototypes, existing in the culture or subculture, that set the pattern for the structures and activities occurring at the concrete level. Thus, within a given society, one school classroom looks and functions much like another. The same holds true for other settings and institutions, both informal and formal. It is as if all were constructed from the same blueprints. These “blueprints” are the macrosystems. Some actually exist in explicit form as recorded laws, regulations, and rules. But most macrosystems are informal and implicit—carried, often unwittingly, in the minds of the society’s members as ideology made manifest through custom and practice in everyday life. To give a formal definition:

4. A **macrosystem** refers to the overarching institutional patterns of the culture or subculture, such as the economic, social, educational, legal, and political systems, of which micro-, meso-, and exosystems are the concrete manifestations. Macrosystems are conceived and examined not only in structural terms but as carriers of information and ideology that, both explicitly and implicitly, endow meaning and motivation to particular agencies, social networks, roles, activities, and their interrelations. What place or priority children and those responsible for their care have in such macrosystems is of special importance in determining how a child and his or her caretakers are treated and interact with each other in different types of settings.

Especially in its formal properties, the foregoing conception of the environment, as well as the dynamic relation between person and situation implied in the definition of the ecology of human development, draws heavily on the theories of Kurt Lewin (1935, 1936, 1948, 1951). Indeed, this article may be viewed as an attempt to provide psychological and sociological substance to Lewin’s brilliantly conceived topological territories.

Having outlined the structure of the ecological environment, we are in a position to examine a construct often alluded to in recent discussions of developmental research—ecological validity. Although this term, as yet, has no accepted definition, one can infer from discussions of the topic a common underlying conception: An investigation is regarded as ecologically valid if it is carried out in a naturalistic setting and involves objects and activities from everyday life. Although originally attracted to this notion, upon reflection I have come to view it not only as too simplistic but as scientifically unsound on several counts. First, while I agree wholeheartedly with the desirability of extending research activities beyond the laboratory, I question the seemingly automatic grant of scientific legitimacy to a research effort merely on the basis of its being conducted in a real-life situation. Even more arbitrary, however, is the converse implication that any investigation carried out in a nonnaturalistic setting is necessarily ecologically invalid, and thereby scientifically suspect on purely a priori grounds. Surely, this is to pre-judge the issue. Moreover, the term ecological validity as it is currently used has no logical relation to the classical definition of validity—namely,
the extent to which a research procedure measures what it is supposed to measure. Indeed, there is a basic conflict in the theoretical assumptions underlying the two definitions. In the classical conception, validity is ultimately determined by the nature of the problem under investigation. In contrast, ecological validity, as presently defined, is apparently determined once and for all by the setting in which the study is being conducted, without regard to the question being investigated. Surely, in any research endeavor this last consideration must be the most decisive in assessing validity of whatever kind.

At the same time, implicit in current concerns with ecological validity is another principle that can no longer be disregarded in the light of available evidence. This is the proposition that the properties of the environmental context in which research is carried out influence the processes that take place within that context and thereby affect the interpretation and generalizability of the research findings.

I have therefore sought to formulate a definition of ecological validity that takes both of these principles into account. Once this task became clear, it was not difficult to achieve. All that was required was a logical extension of the classical definition of validity. As traditionally formulated, this definition is limited in focus, applying only to the measurement procedures employed in research operations. The definition of ecological validity proposed here expands the scope of the original concept to include the environmental context in which the research is conducted.

Definition 3. Ecological validity refers to the extent to which the environment experienced by the subjects in a scientific investigation has the properties it is supposed or assumed to have by the investigator.

Two features of the foregoing definition deserve special comment. **First,** the relevant features of the environment include not only its objective properties but also the way in which it is perceived by the research subjects. This stipulation takes cognizance of perhaps the only proposition in social science that approaches the status of an immutable law—W. I. Thomas's inexorable dictum: "If men define situations as real, they are real in their consequences" (Thomas & Thomas, 1928, p. 572).

Second, note that Definition 3 does not designate any particular kind of research setting as valid or invalid on a priori grounds. Thus, depending on the problem, the laboratory may be an altogether appropriate setting for an investigation and certain real-life environments may be highly inappropriate. Suppose, for example, one is interested in studying the interaction between mother and child when the child is placed in a strange and unfamiliar situation. Clearly the laboratory approximates this condition far better than the home. Conversely, if the focus of inquiry is the modal pattern of parent–child activity prevailing in the family, observations confined to the laboratory can be misleading. As I have documented elsewhere in greater detail (Bronfenbrenner, in press), patterns of parent–child interaction in the laboratory are substantially and systematically different than those in the home. Specifically, so far as young children are concerned, the results indicate that the strangeness of the laboratory situation tends to increase anxiety and other negative feeling states and to decrease manifestations of social competence (Lamb, 1976b; Ross, Kagan, Zelazo, & Kotelchuck, 1975; Lamb, Note 3). Possibly in response to this reaction of the child, parents tend to exhibit more positive interactions toward their children in the laboratory than in the home (Schlieper, 1975; Shalock, 1956; Belsky, Note 4). In addition, Lamb (1976b; Note 3) reported that the tendency of the infant at home to display more affiliative behaviors (e.g., looking, smiling, reaching, vocalizing) toward the father than the mother was reversed in the laboratory. Moreover, consistent with the arguments of Stroufe (1970) and Tulkin (1972) that the laboratory is especially likely to be an anxiety-arousing situation for lower-class families, Lamb found socioeconomic differences in father–infant interaction favoring the middle class in the laboratory, whereas such differences had not been present in the home.

Again, the fact that research results obtained in the laboratory differ from those observed in the home cannot be interpreted as evidence for the superiority of one setting over the other, except in relation to a specific research question. At the very least, such differences serve to illuminate the special properties of the laboratory as an ecological context. More importantly, they illustrate the as-yet-unexploited power of the laboratory as an ecological contrast for highlighting the distinctive features of other types of settings as they affect behavior and development. From this point of view, an ecological orientation increases rather
than reduces opportunities for laboratory research by pointing to new knowledge that can be achieved through close and continuing articulation between laboratory and field.

At a more general level, the comparison of results obtained in laboratory and real-life settings provides an illustration of the basic strategy through which ecological validity can be demonstrated or found wanting. As in the case of the definition of the concept, the method represents an extension of the procedures employed for investigating validity in its classical form. Essentially, the process is one of establishing construct validity (Cronbach & Meehl, 1955), in this instance by testing the ecological theory underlying the research operations—that is, the assumptions being made about the nature and generalizability of the environment in which the research is being conducted. For example, when a laboratory study is regarded as representative of behavior elsewhere, evidence must be provided of an empirical relation to similar activities in the other setting—in other words, validation against an external ecological criterion, with the possibility of systematic divergence explicitly taken into account. It should be recognized, moreover, that such divergence may take the form not merely of differences in average response, but in the total pattern of relationships, and in the underlying processes that they are presumed to reflect. Some examples of substantial shifts in pattern and process from one ecological context to another are cited further on in this article.

The foregoing discussion of ecological validity leads directly to the principal methodological thesis of this exposition. As should be true of any scientific endeavor, decisions on research design are dictated by theoretical considerations. Thus, in the present instance, given the complex conception of the ecological environment in terms of interdependent, nested systems, the question arises as to how these interdependencies can be investigated empirically. I shall argue that a strategy especially well suited for this purpose, from the earliest stages of research forward, is an ecological experiment, defined as follows:

Definition 4. An ecological experiment is an effort to investigate the progressive accommodation between the growing human organism and its environment through a systematic contrast between two or more environmental systems or their structural components, with a careful attempt to control other sources of influence either by random assignment (contrived experiment) or by matching (natural experiment).

I deliberately eschew the term quasi-experiment, typically employed in the research literature, because it suggests a lower level of methodological rigor, an implication I regard as unwarranted on strictly scientific grounds. As I shall endeavor to show, there are instances in which a design exploiting an experiment of nature provides a more critical contrast, insures greater objectivity, and permits more precise and theoretically significant inferences—in short, is more elegant and constitutes "harder" science—than the best possible contrived experiment addressed to the same research question.

In other respects, of course, the definition has a familiar ring. In keeping with the commitment to rigor affirmed at the outset, the main body of the definition is a restatement of the basic logic of the experimental method. What may be challenged about this formulation is not the procedure advocated but the timing and the target of its application. Specifically, I am proposing that experiments be employed in the very first phases of scientific inquiry, not for the usual objective of testing hypotheses (although this device is used as a means to an end) but for heuristic purposes—namely, to analyze systematically the nature of the existing accommodation between the person and the surrounding milieu.

The need for early experimentation derives from the nature of the problem under investigation. The "accommodation" or "fit" between person and environment is not an easy phenomenon to recognize. Here, looking is usually not enough. As Goethe wrote with his poet's prescience: "Was ist das Schwerste von allem? Was dir das Leichteste dunkel, mit den Augen zu sehen, war vor den Augen dir liegt." (What is the most difficult of all? That which seems to you the easiest, to see with one's eyes what is lying before them.)

If looking is not enough, what is one to do? How can the observer quicken his or her sensitivity to the critical features of the observed? The answer to this question was given me more than 30 years ago, long before I was ready to appreciate it, by my first mentor in graduate school, Walter Fenn Fearn. In his quiet, crisp New England accent, he once remarked: "Bronfenbrenner, if you want to understand something, try to change it." And whether one studies change by
deliberately altering conditions in a contrived experiment or by systematically exploiting an "experiment of nature," the scientific purpose and effect are the same: To maximize one's sensitivity to phenomena through the juxtaposition of the similar but different constitutes the core of the experimental method and creates its magnifying power.

The case presented here for early and continuing application of experimental paradigms should not be misinterpreted as an argument against the use of other methods, such as ethnographic description, naturalistic observation, case studies, field surveys, etc. Such strategies can provide invaluable scientific information and insights. The point being made is a positive one—namely, that the experiment plays a critical role in ecological investigation not only for testing hypotheses but, at prior stages, for detecting and analyzing systems properties within the immediate setting and beyond. The special suitability of the experiment for this purpose is highlighted by an adaptation of Dearborn's dictum to the ecological realm: If you wish to understand the relation between the developing person and some aspect of his or her environment, try to budge the one, and see what happens to the other. Implicit in this injunction is the recognition that the relation between person and environment has the properties of a system with a momentum of its own; the only way to discover the nature of this inertia and its interdependencies is to try to disturb the existing balance.

It is from this perspective that the primary purpose of the ecological experiment becomes not hypothesis testing but discovery—the identification of those systems properties and processes that affect, and are affected by, the behavior and development of the human being. Moreover, if the objective is the identification of systems properties, then it is essential that such systems properties not be excluded from the research design before the fact by restricting observation to only one setting, one variable, and one subject at a time. Human environments and—even more so—the capacities of human beings to adapt and restructure these environments are so complex in their basic organization that they are not likely to be captured, let alone comprehended, through simplistic unidimensional research models that make no provision for assessing ecological structure and variation. Accordingly, in contrast to the classical laboratory experiment in which one focuses on a single variable at a time and attempts to "control out" all others, in ecological research the investigator seeks to "control in" as many theoretically relevant ecological contrasts as possible within the constraints of practical feasibility and rigorous experimental design. For only in this way can one assess the generalizability of a phenomenon beyond a specific ecological situation and, equally significant from a developmental perspective, identify the processes of mutual accommodation between a growing organism and its changing surround. For instance, in studying socialization strategies, one might do well to stratify the sample not only, as is commonly done, by social class, but also by family structure and/or child-care setting (home versus day care). Such stratification in terms of two or more ecological dimensions serves the scientifically useful function of providing a systematically differentiated and thereby potentially sensitive grid that makes possible the detection and description of patterns of organism-environment interactions across a range of ecological contexts. Moreover, given the extraordinary capacity of the species homo sapiens to adapt to its milieu, these patterns are more likely to be complex than simple. To corrupt, only slightly, the terminology of experimental design: In ecological research, the principal main effects are likely to be interactions.

This brings us to the final and most challenging requirement of a research model for investigating the ecology of human development: Namely, environmental structures, and the processes taking place within and between them, must be viewed as interdependent and must be analyzed in systems terms. The specification of these interdependencies constitutes a major task of the proposed approach. The rest of this article represents a beginning effort in this direction in the form of a series of propositions outlining the requirements of an ecological model for research at each of the four successive levels stipulated in the conceptual framework of the environment. Each proposition is accompanied by one or more examples of concrete investigations—actual when available, hypothetical when not—to illustrate the given requirement, either by demonstration or default.

The reference to illustration by default reflects the fact that for reasons already indicated, well-designed, ecological experiments are, as yet, not easy to find. In an effort to alter this state of affairs, I was fortunate in enlisting the support of the Foundation for Child Development (FCD) in
initiating a small-scale program of research grants and career development awards in the ecology of human development. The aim of the program is to encourage scientific work and training in the systematic study of "the behavior and development of children, and those who care for them, in the enduring environments in which they live." A number of ecological experiments cited in this article were supported by grants from the FCD program.²

Properties of the Microsystem

RECIROCITY

It is a sign of some progress that the first systems property to which I call attention is one that many readers will recognize and applaud. In the classical, psychological research model, whether in the laboratory or in the field, there were, and often still are, only two parties—an experimenter, identified solely, and apparently still acceptably, as E, and another person equally informatively described as S, the subject. The term subject is apt, for it reflects the fact that with few exceptions, the process operating between E and S has been viewed as unidirectional; the experimenter presents the stimulus, and the subject gives the response. Nowadays, we all know that the process goes both ways. In more formal terms:

PROPOSITION 1. In contrast to the traditional, unidirectional research model typically employed in the laboratory, an ecological experiment must allow for reciprocal processes; that is, not only the effect of A on B, but also the effect of B on A. This is the requirement of reciprocity.

While the thesis that most behavior in social situations is reciprocal is generally accepted in principle, it is often disregarded in practice. As a striking case in point, we may consider a series of ingenious ecological experiments and follow-up studies conducted by a group of investigators from the Department of Pediatrics at Case Western Reserve University (Kennell et al., 1974; Klaus, Kennell, Plumb, & Zuehlke, 1970; Klaus et al., 1972; Ringler, Kennell, Jarvella, Navojosky, & Klaus, 1975; Hales, Note 5). Taking as their point of departure observations on animals revealing complex, species-specific patterns of mother-neonate interaction immediately after delivery (Rheingold, 1963), the investigators undertook to explore this phenomenon in the human case. Noting that prevailing hospital practices resulted in minimal opportunities for contact between mother and newborn, the researchers modified the established procedures so as to permit mothers to have their naked infants with them for about an hour shortly after delivery and for several hours daily thereafter. Randomly assigned control groups experienced the usual routine in American hospitals—a glance at their baby shortly after birth, a short visit six to 12 hours after birth for identification purposes, and then 20- to 30-minute visits for feeding every four hours during the day (Kennell et al., 1974, p. 173).

The reported results of these experiments strain the credulity of the reader. One month after the brief extended contact at birth, the mothers in the experimental group were more attentive and affectionate toward their babies and more solicitous about their welfare (Klaus et al., 1972). Not only were these differences still in evidence at the end of the 1st year, but 2 years later the mothers, in speaking to their children, used significantly more questions, adjectives, and words per proposition and fewer commands and content words than did the control mothers.

Finally, the most recent experiment in the series (Hales, Note 5) not only provides a much-needed replication of the initial studies in a larger sample (N = 60) but does so in a different cultural context (Guatemala) and with a more rigorous experimental design that permits pinning down the heretofore unresolved issue of whether there exists a critical period of susceptibility to extended contact between mother and infant. Hales clarified this issue by introducing two early-contact groups: one limited to 45 minutes immediately after delivery and the other to an equal interval but beginning 12 hours after the infant's birth. The results were unequivocal. Only the mothers in the immediate contact group were affected.

RECOGNIZING THE FUNCTIONAL SOCIAL SYSTEM

From an ecological perspective, even more remarkable than the dramatic results reported in this series of experiments are the data they omit. In none of the papers cited is there a single word

² Information about the program may be obtained by writing to Joyce Brainard, Administrative Aide, Program on the Ecology of Human Development, Department of Human Development and Family Studies, Cornell University, Ithaca, New York 14853.
about the behavior of the infants, and all of the experimental effects are attributed entirely to the mothers. Thus the investigators refer repeatedly to a "maternal sensitive period" or "a special attachment period existing in the human mother" (Klaus et al., 1972, p. 463; Kennell et al., 1974, p. 173). The principle of reciprocity, of course, raises the question of whether the distinctive behavior of the mothers in the experimental group might not have occurred, at least in part, as a response to a sequence of activities initiated by the developing infant and reciprocated by the mother in a progressively evolving pattern of social interaction. Regrettably, the possibility remains unexplored. In keeping with the classical experimental model, the focus of scientific attention in these studies was limited to the subjects of the research, who, in this instance, were not the children but the mothers. The omission is all the more remarkable given the fact that the infants were always present in the research situation and, what is more, that all of the mothers' behavior being observed was directed toward them.

Taken as a whole, this series of experiments on the effects of early, extended mother–infant contact provides an excellent illustration of several defining properties of an ecological research model, both by demonstration and default. On the one hand, the work constitutes a clear instance of ecologically valid experimentation focused directly on developmental processes. Moreover, it presents an example par excellence of how experimental intervention can bring to light critical features of an ecological process hardly likely to be identified through straightforward naturalistic observation in the unaltered, existing setting. On the other hand, the research represents a striking case of failure to take into account the total social system actually functioning in the given situation.

This dramatic lacuna in an otherwise impressive series of studies gives rise to the next proposition.

Proposition 2. An ecological experiment requires recognition of the social system actually operative in the research setting. This system will typically involve all of the participants present, not excluding the experimenter. This is the requirement of recognizing the totality of the functional social system in the setting.

This proposition becomes increasingly important as one moves on to a consideration of systems involving more than two persons.

BEYOND THE DYAD

The Case Western Reserve University experiments reflect the influence of the traditional laboratory paradigm in still one other respect; they are limited to a two-person model. As previously noted, the classical psychological experiment allows for only two participants: E and S. Even in those researches that take into account the activities of more than two persons in differing roles, the behavior of each is usually analyzed separately and interpreted as an independent effect. As a case in point, we may consider recent work on father–infant interaction. Much of this research treats the behavior of the father, and any reaction it may evoke in the child, in exclusively class-theoretical terms (Lewin, 1935) as attributable entirely to the father, without regard to the possibility that both the father's action and the child's responses may be influenced by the mother—her presence or absence and the possible effect of her behavior on the interaction of the father with the child. I refer to this kind of indirect influence as a *second-order effect*. To state the issue in propositional form:

Proposition 3. In contrast to the conventional dyadic research model, which is limited to assessing the direct effect of two agents on each other, the design of an ecological experiment must take into account the existence in the setting of systems that include more than two persons ($N + 2$ systems). Such larger systems must be analyzed in terms of all possible subsystems (i.e., dyads, triads, etc.) and the potential second- and higher order effects associated with them.

It will be observed that this proposition represents, in effect, an extension and further specification of Proposition 2 as applied to a system involving more than two persons. To illustrate the application of the principle, let us turn to three recent studies of parent–child interaction that, explicitly or implicitly, employed a three-person model. Parke (1976) and his co-workers observed both parents with their newborns in a hospital setting to determine what effect each parent had on the other's interactions with the infant. In each case, the presence of the spouse significantly altered the behavior of the other parent, specifically, both father and mother expressed more positive affect (smiling) toward
their infant and showed a negative level of expectation when the other parent was present ... These results indicate that parent-infant interaction patterns are modified by the presence of another adult; in turn, the implication is that we have assumed prematurely that parent-infant interaction can be understood by our sole focus on the parent-infant dyad alone. (Parke, 1976, pp. 33-34)

Support for Parke's conclusion comes from a study by Pederson (Note 6), in which the second-order effect is somewhat more remote but equally, if not more, consequential. This investigator examined the influence of the husband-wife relationship (assessed through interview) on mother-infant interaction in a feeding context (as observed in the home). His results are summarized as follows:

The husband-wife relationship was linked to the mother-infant unit. When the father was supportive of the mother ... she was more effective in feeding the baby ... High tension and conflict in the marriage was associated with more inept feeding on the part of the mother. (Pederson, Note 6, p. 6)

Pederson also found that the developmental status of the infant, as measured on the Brazelton scale, was inversely related to the degree of tension and conflict in the marriage. Consistent with the present Proposition 1, he notes appropriately that the causal direction could go both ways. 4

Pederson's results indicate that this second-order effect can have inhibitory as well as facilitative impact. Indeed, Lamb (1976a) suggests, on the basis of experimental findings, that as the infant gets older (i.e., 18 months) the presence of the second parent may reduce rather than increase parent-child interaction. The experiment, however, was carried out in the laboratory. As previously noted, a number of comparative studies (including one by Lamb) have shown that both parents and children behave rather differently in laboratory and real-life situations; hence it would be important to replicate Lamb's experiment in a home setting.

When interpreted in an ecological perspective, however, the results of laboratory studies provide an important complement to research carried out in real-life environments. For example, if the laboratory is viewed as what it almost invariably is for a young child—namely, a "strange situation" (Ainsworth & Bell, 1970)—it clearly reveals the role of the parent as a source of security for the child and, in terms of a three-person model, as a catalyst for the child's interaction with the environment, including other, unfamiliar persons. Thus, in all the "strange-situation" experiments, the mother's presence in the laboratory reduces the child's anxiety and resistance to the "stranger." Indeed, especially when the experiments are carried out in the home (e.g., Lamb, 1976b; Note 3), infants in the company of their parents look and smile at the stranger more often than at their mothers.

The mother-father-child triad is of course not the only three-person system of developmental importance within a family. Other common combinations include two siblings and a parent; parent, child, and grandparent, aunt, or uncle, etc. I have been able to find only one study of the effect of the impending arrival of a second child on the parental treatment of the first, that done by a prescient leader in the field over a quarter of a century ago (Baldwin, 1947). Other triadic combinations in the family apparently remain wholly unexplored and hence constitute a promising ecological domain for developmental research.

The application of a three-person model to a developmental context outside the home is likewise a rarity. There does exist one elegant study, however, documenting a second-order effect in a classroom setting. Seaver (1973) ingeniously exploited an "experiment of nature" to investigate the controversial phenomenon of induced teacher expectancies (Rosenthal & Jacobson, 1968). Seaver examined differences in the academic achievement of elementary-school pupils with older siblings who had had the same teacher and had performed either exceptionally well or exceptionally poorly. Children taught by teachers who had not instructed the older siblings served as controls. In contrast to earlier studies, which had produced inconsistent, weak, or questionable effects, the results of Seaver's natural experiment gave substantial support to the teacher expectancy hypothesis. As Seaver himself acknowledged, however, it was not clear who was the mediator of the observed effect. Were the teacher's expectations changed because of her prior experience with the older sibling, or did the younger sibling evoke a different response from the teacher because of the younger child's expectations created by the older sibling or by the parents (based on their previous acquaintance with the teacher), or both? The remaining ambiguity in interpretation testifies to the

4 The reciprocal interaction between the marital and the parent-child dyads in a three-person system is demonstrated even more dramatically in Hetherington's (Note 7) comparative study of divorced versus two-parent families.
importance of analyzing subsystems and higher order effects as stipulated in Proposition 3.

The involvement of parents as intermediaries in a process already involving two siblings and a teacher would of course escalate the system from a triad to a quintet, or, more generally, an $N + 3$ system. To my knowledge, no studies utilizing such a model have been carried out within a single setting, despite the fact that the modal American family with two parents and two children constitutes a readily available example. The wide prevalence of this structure raises the question of the optimal size and form of systems for fostering human development.

The evidence cited above suggests that as one moves beyond the dyad, the resulting structures may offer possibilities for greater stability, mutual assistance, complementarity, spelling each other off, and reinforcement, both directly and indirectly through third parties. Although the power of an $N + 3$ system within a single context such as the home or school remains unknown, the paradigm can be applied to some researches that have been carried out in multiple settings. Before turning to a consideration of this topic, however, we must take note of yet another source of higher order effects.

INDIRECT IMPACT OF PHYSICAL FACTORS

Environmental influences on development are of course not limited to human beings. However, in keeping with the classic two-element research model, these influences are usually thought of as acting directly on the subject; the possibility of higher order effects operating indirectly has been overlooked. The following are two examples.

The first is provided by an elegant ecological study of the influence of apartment noise on human development (Cohen, Glass, & Singer, 1973). The investigators found that children living on the lower floors of 32-story buildings near noisy traffic showed greater impairment of auditory discrimination and reading achievement than a matched sample living in higher floor apartments. Cohen et al. viewed their study as a real-life counterpart to laboratory experiments demonstrating degradation of task performance as a direct aftereffect of exposure to noise. The two situations are not analogous, however, since the real-life setting included other persons besides the children selected as the subjects of the study. Moreover, these other persons—the children's parents and other members of their families—were also exposed to traffic noise and, in all likelihood, affected by it. If so, the possibility remains that the impairment of the children's auditory discrimination and verbal skills might have come about not only as a function of their own difficulties in hearing or sustaining attention in a noisy environment, but also because others around them were similarly affected and engaged less frequently in conversations, in reading aloud, or in correcting their children's verbal utterances. No data are available to demonstrate or disconfirm the existence of such a second-order effect, but relevant information could have readily been obtained had the other participants in the setting been included in the research design.

Similar considerations apply to research on the effects of television. Almost all investigations in this area have been concerned with the direct impact of the program viewed by the child on his or her knowledge, attitudes, and behavior; indirect influences through the modification of patterns of family life have scarcely been mentioned, let alone investigated. In a review of research literature bearing on this issue, Garbarino (1975) was able to identify only one investigation that dealt with the question explicitly and systematically. In a field survey, Maccoby (1951) found that 78% of the respondents indicated no conversation occurred during viewing, except at specified times such as commercials, and that 60% reported that no activity was engaged in while watching. On the basis of her findings, Maccoby concluded:

> The television atmosphere in most households is one of quiet absorption on the part of family members who are present. The nature of the family social life during a program could be described as "parallel" rather than interactive, and the set does seem quite clearly to dominate family life when it is on. (p. 428)

It is noteworthy that Maccoby's study was published a quarter of a century ago and that, apparently, no further research has been done on the problem since that time. With the rapid growth of television, and the television culture, in the intervening years, the impact of the medium on family life has, in all probability, become both more pervasive and profound. The question of how any resulting change in family patterns has, in turn, affected the behavior and development of children (i.e., the second-order effect) remains completely unexplored.

These and related studies lead to the following proposition:
PROPOSITION 4. Ecological experiments must take into account aspects of the physical environment as possible indirect influences on social processes taking place within the setting.5

Having concluded these analyses of systems properties in the immediate setting containing the person, let us proceed to a consideration of multiple contexts.

The Mesosystem: Relations Between Settings

While human beings have been studied in a variety of environments, there are few investigations in which the behavior and development of the same persons have been examined as a function of their exposure to different settings.6 Thus we usually carry out our researches either in the laboratory, the home, or the classroom but seldom in more than one context simultaneously. From a theoretical viewpoint, we may note here a continuity of the traditional research paradigm but now across domains; the restricted two-person system at the level of the individual becomes an analogous person-in-single-context model at the level of settings. If a second setting is introduced, the system becomes triadic (so far as the subject is concerned) and thus allows for the possibility of second-order effects, now across settings. Such theoretical enrichment generates an array of new and provocative research questions. Not only does it necessarily introduce a comparative perspective, but it also calls attention to the importance of investigating joint effects and interactions between settings (e.g., home and school, family and children's peer group, the peer group and the school, etc.) and thereby highlights the possibility that events in one milieu may influence the child's behavior and development in another. Thus, the experience of a child in day care, in the classroom, or in the informal peer group may change his pattern of activities and interaction with parents or siblings in the home, or vice versa, with consequent implications for learning and development.

INTERACTIONS BETWEEN SETTINGS

In order to examine the joint effects of exposure to more than one setting, an ecological research model must have certain additional properties, which are presented in the next series of propositions. I shall begin with a general principle that outlines the range of phenomena that the paradigm must encompass.

PROPOSITION 5. In the traditional research model, behavior and development are investigated in one setting at a time without regard to possible interdependencies between settings. An ecological approach invites consideration of the joint impact of two or more settings or their elements. This is the requirement, wherever possible, of analyzing interactions between settings.

Let us take as our initial examples the two earliest shifts in setting that a human being typically experiences in modern societies: first, the temporary separation of the newborn from the mother to the hospital nursery, and second, the move from the hospital to full-time maternal care in the home. These transitions were exploited for experimental purposes in a study by Scarr-Salapatek and Williams (1973) of babies born prematurely to mothers from severely deprived socioeconomic backgrounds. Infants were assigned consecutively to the experimental or control group as they entered the premature nursery. In the first phase of the study, conducted in the hospital, the babies in the control group received standard pediatric care for the low-birth-weight infants. For infants in the experimental group, the nursery staff . . . were instructed before the study began to provide special visual, tactile, and kinesthetic stimulation that approximated good home conditions for normal newborns. The practical nurses rocked, talked to, fondled, and patted the infants during feedings in which they were held in the nursing position and could regard the nurse's faces. (Scarr-Salapatek & Williams, 1973, p. 97)

Originally, the investigators had intended to include the mothers in the stimulation process, "but this proved impractical because most were unable or unwilling to come frequently to the hospital and play with their babies" (p. 98). Instead, as soon as the infants were discharged from the hospital, the second phase of the experimental treatment

5 Although the rapid growth in recent years in environmental psychology (e.g., Moos, 1976; Proshansky, Itelson, & Rivlin, 1970) has led to a proliferation of studies on the impact of physical factors on behavior, little of this research has focused on indirect effects of these factors on the behavior of those who, in turn, influence the course of someone else's development.

6 The work of Barker, Schoggen, Wright, and their colleagues (Barker & Gump, 1964; Barker & Schoggen, 1973; Barker & Wright, 1954) represents a notable exception, although in their research, settings are conceived and analyzed almost exclusively in behavioral terms, with only incidental reference to their social-structural properties.
was initiated through a series of weekly visits to the home over a period of 2 years by a “child guidance social worker” who talked with the mother or other principal caretaker.

Although initial measures of maternal health and neonate developmental status had favored the control group, the experimental infants showed significantly greater weight gains, and by 1 year, an average difference of nearly 10 IQ points separated the two groups. The mean score for the infants in the experimental group was 95, thus bringing them “to nearly normal levels of development” (p. 99), truly a remarkable achievement for a low-birth-weight sample from so deprived a socio-economic background.

Although this important experiment does document the joint effects of experience in two different settings, hospital and home, the design does not permit a definitive assessment of the independent contributions of each, since there were no comparison groups receiving the home or hospital treatment only. Nevertheless, the research illuminates, again both by demonstration and default, some of the parameters required of an ecological model appropriate for analyzing developmental processes for the same children in more than one setting. To begin with, we observe that the existence of two locales (i.e., hospital and home) necessarily involves the child in an $N + 2$ system that extends across both settings instead of being limited to one. Thus, in the case at hand, there are participants in four different roles: The infant appears in both settings, the nurse only at the hospital, and the mother and social worker primarily in the home. This four-person structure permits a variety of possible subsystems and higher order effects, both within and across settings. Unfortunately, in keeping with the traditional research model, the measures obtained focused almost exclusively on the experimental subjects (the infants) and were confined to test scores in the bargain. Thus, no systematic data were collected about the infants’ immediate response to the stimulus as it was provided, nor about the participants’ interactions with and perceptions of each other. Here and there throughout the report, however, there are tantalizing fragments of information suggesting that certain patterns of response and relationship were central to the developmental processes that were taking place. For example:

Previously skeptical nurses (and investigators) were amazed to see 3-pound infants gazing at the brightly colored, patterned birds [suspended above their heads] The infants were observed to gaze at the faces of the nurses who fed them and to respond socially to handling and voices by quieting when distressed Most mothers . . . were interested in the social worker’s help, not only for their children but for themselves. They sought her advice and aid on many practical details of life . . . and in personal problems (e.g., troubles with men, mothers, siblings; feelings of depression). (Scarr-Salapatek & Williams, 1973, pp. 99-100)

The mothers in the experimental treatment were also very cooperative. Despite frequent moves, only one child was lost to the research from this group, compared to six from the control sample. Even though several of the experimental children were cared for by foster mothers for part of the year, the mothers assisted the social worker in arranging for continuation of the home visits with the new caretaker. “In no case was the home visitor excluded from an infant’s home” (p. 98). Such continuity and cooperation are hardly typical in research with families from the lowest socioeconomic-status group and testify to a strong involvement by the mothers in their premature infants and in the program of home visits designed to follow through on the stimulation strategies begun in the hospital.

Taken together, the foregoing bits of information suggest that within the four-person system produced by the experimental treatment, certain subsystems became especially strong: namely, nurse-infant; social-worker-mother; mother-infant; and, perhaps, mother-infant-social-worker, involving the second-order effect of the home visitor on the interaction of the mother with her child. Another second-order effect, in this case across both time and space, appears highly likely for the influence on the mother-infant dyad of the infants’ involvement in the clearly reciprocal relationship developed earlier with the nurses at the hospital, a pattern reminiscent of the attachment between the newborn and the mother described in the case Western Reserve University experiments summarized earlier.

In fact, one wonders what would have happened had the mothers in the experimental group been provided with opportunities for “extended contact” of the type afforded to mothers of premature in the previously cited study by Klaus et al. (1970). Perhaps, following this experience, the mothers would not have been so “unable and unwilling” to come to the hospital. Or, failing that, suppose the researchers had made use of the triadic subsystem of nurse-social-worker-mother by having the social worker begin her visits as soon as the
mother returned home after delivery and report
to her the nurse's enthusiastic descriptions of her
premature baby's surprisingly "mature" responses
to stimulation of the kind normally provided to
full-term infants at home?

I mention these possibilities not primarily for
their relevance to the experiment under discussion
(which constitutes a substantial scientific contri-
bution in its original form) but as a concrete illus-
tration of the next general proposition, which re-
Represents an extension of Proposition 3 beyond a
single setting.

Proposition 6. The design of an ecological ex-
periment involving the same person in more than
one setting should take into account the possible
subsystems, and associated higher order effects,
that exist, or could exist, across settings.

Ecological Transition

The study by Scarr-Salapatek and Williams
(1973) also provides an example of a fundamental
paradigm for ecological research at the level of
the mesosystem—namely, one that focuses on the
successive shifts in role and setting that every per-
son undergoes throughout the life span. Indeed,
such changes have been exploited for research
purposes in several of the studies previously dis-
cussed. To recall but a few: a mother is pre-

sent with her newborn infant for the first
time (Klaus et al., 1970), the baby returns
home from the hospital (Scarr-Salapatek & Wil-
liams, 1973), or the child is promoted to the
next grade in school (Seaver, 1973). It is not
difficult to think of other situations along the
same line: the arrival of a sibling; entering a day
care center; the move from preschool to school;
getting a new teacher; going to camp; gradu-
ations; "dropping out"; finding one's first job;
changing jobs; losing a job; marriage; becoming
pregnant; having relatives or friends move in (and
out again); buying one's first family TV set, car,
or home; vacations; travel; moving; divorce; re-
marrriage; changing careers; emigrating; or, to re-
turn to the more universal, becoming sick; going
to the hospital; getting well again; returning to
work; and—the final experience to which there
are no exceptions—death.

Systems properties of ecological transitions. I
have called attention to this varied array of events
in everyday life not for their personal but for
their scientific significance. For each one consti-
tutes, in effect, a ready-made experiment of nature
with a built-in, before—after design in which each
subject serves as his own control. Moreover, these
ecological transitions are sufficiently diverse to in-
volve every one of the settings and systems prop-
erties set forth in the six propositions thus far. To
begin with, they all take place in real-life settings.
In terms of the elements of the setting, they entail
changes over time in role, activity, and often place
as well (wife to mother, child at home to pupil
at school, student to worker, etc.). The magni-
tude of the microsystem expands and contracts
with marriages, births, graduations, divorces, and
deaths. Reciprocal processes and second-order and
higher order effects are the rule, for a develop-
mental transition in the state and status of one
member of the system invariably alters the rela-
tions between the others. Since almost every
transition involves more than one setting, recipro-
cal processes occur not only within but also across
setting boundaries, thus involving interaction
effects at the level of higher order systems. For
example, when a child enters day care, the pat-
tern of family activities changes; a divorce can
alter a child's behavior in the classroom; dropping
out of school has reverberations in the family; and
a new job in another town affects home, school,
and every other environment of developmental
significance.

To be sure, some of the foregoing transitions
have been exploited for research purposes, par-
ticularly in the growing field of environmental
psychology (Moos, 1976; Proshansky et al.,
1970), but attention has been focused almost ex-
clusively on the immediate effects of environmen-
tal changes, for example, in terms of stress (Doh-
renwend & Dohrenwend, 1974). In contrast, what
I am emphasizing here is the role of ecological
transitions in shaping the course and content of
human development. In particular, such ecological
transitions provide a framework for dealing with
developmental changes throughout the life span
(Goulet & Baltes, 1970). The almost exclusive
focus of past research (particularly in develop-
mental psychology) on the properties of the in-
dividual with little reference to context has gen-
erated a curiously broken trajectory of knowledge
that has a brave beginning, a sad ending, and an
empty middle. Given a theoretical perspective in
which development is seen as instigated and paced
primarily by events within the organism—that is,
by biological change—the outcome is a segmented
science that abounds with information about the
early years, grows less informative through middle

AMERICAN PSYCHOLOGIST • JULY 1977 • 525
childhood and adolescence, and then becomes virtually silent for decades, until the organism begins to decline, when there is once again a spurt of scientific activity. To be sure, a number of events in the life cycle discussed above have been the objects of scientific study. But such investigations have seldom been planned and conducted for the explicit purpose of assessing the impact of the experience upon processes of development. And even when this aim has been pursued, the research design has typically been cross-sectional rather than longitudinal (as, for example, in most studies of home versus day care). As a result, the inquiry can shed little light on the transition as a developmental experience. Also, whether cross-sectional or longitudinal, studies to date, as already noted, have focused almost exclusively on one class of persons designated as the experimental subjects. The impact of an ecological transition not merely on the developing person but on the other people in his life and on the enduring subsystems which they comprise (e.g., family, peer group, etc.) remains an unexplored and scientifically promising terrain for ecological research in human development.

Evidence of this promise is found in the reports of the few intrepid investigators who have ventured into these territories. First and foremost is the pioneering classic study by Thomas and Znaniecki (1927), The Polish Peasant in Europe and America, an analysis of the effects of cultural transition not only on the life course of individual immigrants but on their families and communities as well. A recent neoclassic, with direct implications for the contemporary scene, is Elder’s (1974) longitudinal research on Children of the Great Depression, which examines the contrasting trajectories set in motion for families starting at similar positions in the socioeconomic structure but then exposed to markedly varying degrees of financial stress. Elder documents how the resulting differential interplay of forces—involving the family, the world of work, the school, and the community—produces distinctive courses of development from childhood through the middle years.

It is this developmental impact of ecological transitions that is addressed in the next proposition. In contrast to the earlier propositions, which spoke mainly to theory and method, this one deals with substance and scope:

Proposition 7. A fruitful context for developmental research is provided by the ecological transitions that periodically occur in a person’s life.

These transitions include changes in role and setting as a function of the person’s maturation or of events in the life cycle of others responsible for his or her care and development. Such shifts are to be conceived and analyzed as changes in ecological systems rather than solely within individuals. These transitions are not limited to the early years but recur, in various forms, throughout the life of the person. Hence, the ecology of human development must incorporate a life-span perspective if it is to do justice to the phenomena within its purview.

The Exosystem: Developmental Settings in Context

Thus far I have dealt only with the immediate settings containing the developing person and with the relations between them. We must now move to more remote regions to consider the impact on these immediate settings of the external contexts in which they are embedded. Such exosystems are both formal and informal: the nature and requirements of the parents’ work, characteristics of the neighborhood, health and welfare services, government agencies, the relations between school and community, informal social networks, transportation systems, law enforcement practices, shopping facilities, means of communication, patterns of recreation and social life, and a host of other ecological circumstances and events that determine with whom and how people spend their time. Other examples include the fragmentation of the extended family, the separation of residential and business areas, the breakdown of social networks, the disappearance of neighborhoods, zoning ordinances, geographic and social mobility, growth of single-parent families, the abolition of the apprentice system, consolidated schools, commuting, the working mother, the delegation of child care to specialists and others outside the home, urban renewal, or the existence and character of an explicit national policy on children and families. In sum, here in the third circle of the ecological model are whole subcontinents waiting for scientific exploration—waiting because, to date, there have been few investigations of exosystem effects on developmental processes. Here we are truly on terra incognita so far as systematic research is concerned.

One might challenge this assertion on the grounds that studies of social-class differences provide a massive body of information about the
impact of the larger environment on development. Such studies are certainly relevant, but they fail to meet a basic requirement of the ecological model: Namely, in developmental research, social class is usually treated as a linear variable rather than conceptualized in systems terms, for example, in terms of the social network in which a person is a participant (Cochran & Brassard, Note 8) or the structural requirements of the work in which a person is engaged (Kohn & Schooler, 1973).

The properties of the research model for investigating relations at the level of the exosystem are precisely those that have been specified in the prior propositions; the only difference is that these stipulations are now applied to settings and systems beyond the immediate situation containing the developing person and have impact on that immediate situation. In other words, exosystems represent sources of higher order effects from more remote regions of the environment.

Accordingly, exosystems do not require any new functional principles; their place and purpose in the present theoretical schema is essentially heuristic: to alert researchers to aspects of the larger environment that may be critical for the process of making human beings human. It is this heuristic function that is embodied in the next proposition.

Proposition 8. Research on the ecology of human development requires investigations that go beyond the immediate setting containing the person to examine the larger contexts, both formal and informal, that affect events within the immediate setting.

As already indicated, research examples that meet the foregoing criteria are difficult to come by. I have been able to discover only a few correlational findings and fragmentary facts and offer the following three instances.

In a study of child neglect among low-income families, Giovannoni and Billingsley (1970) sought to identify the environmental circumstances associated with the parents' treatment of the child. Among other conditions (such as inadequate housing and absence of a telephone), differentiating factors included the existence of a functional kinship network, as well as church attendance. In summing up their findings, Giovannoni and Billingsley (1970) concluded that "among low-income people, neglect would seem to be a social problem that is as much a manifestation of social and community conditions as it is of any individual parent's pathology" (p. 204).

Corroborative data on a broader scale come from a correlational analysis of child-abuse reports and socioeconomic and demographic information for the 58 counties of New York State (Garbarino, 1976). In the investigator's words, "A substantial proportion of the variance in rates of child abuse/maltreatment among New York State counties (three samples) was found to be associated with the degree to which mothers do not possess adequate support systems for parenting and are subjected to economic stress" (p. 185).

The fragmentary fact appears in the previously cited experiment of Scarr-Salapatek and Williams (1973) on the effects of early stimulation on premature infants. What were the long-range effects of their highly successful intervention? The sobering answer to this query appears in the following statement at the conclusion of their report:

A longer-term follow-up of infant development in the E group would be very desirable to see if initial gains were maintained through the second year. Unfortunately, the shortage of federal funds has closed the High Risk Clinic so that pediatric care and psychometric evaluation are no longer available to the low-birth-weight group. (p. 100)

This depressing statement leads us to the highest level of the ecological model, the macrosystem of institutions and associated ideologies that permeate the society as a whole.

Experimenting with the Macrosystem

There are two major strategies for investigating the overarching institutional and ideological patterns of the culture or subculture as they affect human development. The first is the comparison of existing systems that embody markedly differing patterns of basic social organization. Cross-cultural studies are the most common form of this type of investigation. Unfortunately, many of these researches focus attention almost exclusively on the characteristics of individuals rather than on the social contexts in which these individuals are found. As a result, they can shed little light on the process of accommodation between person and environment which constitutes the core of an ecology of human development. Another opportunity for investigating the impact of macrosystems on socialization is provided by secular changes that fundamentally alter the character of the society. An example is Elder's investigation of children in the Depression, mentioned earlier. But all such naturalistic studies have the disad-
vantage of being limited to variations in macro-
systems that presently exist or have occurred in
the past. Future possibilities remain uncharted,
except by hazardous extrapolation.

This restriction to the status quo or at most to
the status quo ante represents another delimiting
characteristic of most American research on human
development. This foreshortened theoretical per-
pective was first brought to my attention by Pro-
fessor A. N. Leontiev of the University of Mos-
cow. At the time, a decade ago, I was an ex-
change scientist at the Institute of Psychology.
We had been discussing differences in the assump-
tions underlying research on human development
in the Soviet Union and in the United States. In
summing up his views, Professor Leontiev offered
the following judgment: “It seems to me that
American researchers are constantly seeking to ex-
plain how the child came to be what he is; we
in the USSR are striving to discover not how the
came to be what he is, but how he can be-
come what he not yet is.”

THE TRANSFORMING EXPERIMENT

Leontiev’s statement is of course reminiscent of
Dearborn’s injunction (“If you want to understand
something, try to change it.”), but it goes much
further; indeed, in Leontiev’s view, it is revolu-
tionary in its implications. Soviet psychologists
often speak of what they call the “transforming
experiment.” By this term they mean an experi-
ment that radically restructures the environment,
producing a new configuration that activates pre-
viously unrealized behavioral potentials of the sub-
ject. Russian developmental psychologists have
indeed been ingenious in devising clever experi-
ments that evoke new patterns of response, pri-
marily in the sphere of psychomotor and per-
ceptual development (Cole & Maltzman, 1969).

But once Soviet research moves out of the labora-
tory, the control group disappears, systematic data
yield to anecdotal accounts, and the “transforming
experiment” degenerates into dutiful demonstra-
tion of ideologically prescribed processes and out-
comes.

For rather different reasons, “transforming ex-
periments” in the real world are equally rare in
American research on human development. As
Leontiev implied, most of our scientific ventures
into social reality perpetuate the status quo; to the
extent that we include ecological contexts in our
research, we select and treat them as sociological
givens rather than as evolving social systems sus-
ceptible to significant and novel transformation.
Thus we study social-class differences in develop-
ment, ethnic differences, rural–urban differences—or,
at the next level down, children from one-
versus two-parent homes, large versus small fami-
lies—as if the nature of these structures, and
their developmental consequences, were eternally
fixed and unalterable, except, perhaps, by violent
revolution. We are loath to experiment with new
social forms as contexts for realizing human po-
tential. “After all,” we say, “you can’t change
human nature.” This precept underlies our na-
tional stance on social policy and much of our
science in human development as well.

It is obvious that the discussion is now no longer
confined to settings and social structures on the
local scene. We have moved from the mundane
micro-, meso-, and exostructures of a particular
community to the level of macrosystems—the in-
tstitutions, and their associated ideologies, that per-
vade major segments of the society or the culture
as a whole. The implications of this shift for an
ecological research model concern the nature of the
contrasts to be employed in our experiments. It
is one thing to compare the effects on development
of systems or system elements already present
within the culture; it is quite another to introduce
experimental changes that represent a restructuring
of established institutional forms and values.

With these unorthodox thoughts, we arrive at
the last and most demanding of the propositions
defining the nature and scope of ecological ex-
periments.

PROPOSITION 9. Research on the ecology of hu-
man development should include experiments in-
volving the innovative restructuring of prevailing
ecological systems in ways that depart from exist-
ing institutional ideologies and structures by re-
defining goals, roles, and activities and providing
interconnections between systems previously iso-
lated from each other.

Precisely for the reasons outlined above, it is
not easy to cite examples of experiments that sat-
sify the requirements of Proposition 9. But in
selecting illustrations for earlier principles, I tried
to anticipate the requirements of this last propo-
sition as well. The researches of Klaus et al. and
of Scarr-Salapatek and Williams represent cases
in point. Instead of examining alternative modes
of transition already available in our society, these
investigators introduced unorthodox innovations.
The former violated established hospital practice by allowing mothers to have immediate and extended contact with their newborn infants. The latter, in effect, presumed to treat prematures from severely deprived low-income families as if they were full-term offspring from middle-class homes.

Examples of equally radical environmental transformations for children at older age levels are even more difficult to find. One thinks of the controversial experiment of Skeels (1966), who removed children diagnosed as mentally retarded from an orphanage and placed them in the care of mentally retarded adult females in a hospital ward. The children exhibited marked increases in IQ, were subsequently adopted, and ultimately led productive lives as adult workers and family members. An experiment with similar beginnings is described by Heber, Garber, Harrington, and Hoffman (1972), although follow-up data after the children’s entry into school are yet to be reported.

Perhaps the best example of a “transforming” ecological experiment explicitly designed for that purpose was conceived and carried out by Sherif. In his “Robbers Cave Experiment,” Sherif and his colleagues (Sherif, Harvey, Hoyt, Hood, & Sherif, 1961) were able, within the space of a few weeks, to produce radical changes in the behavior of a group of middle-class, 11-year-old boys involved in an experimental camp. By altering the structure of activities and social organizations, they first evoke high levels of aggression bordering on sadism, and then transformed the same boys into friendly, cooperative, altruistic citizens. This outcome was achieved through setting an objective best epitomized by the classic statement of Vince Lombardi, coach of the world-champion Green Bay Packers: “Winning isn’t everything; it’s the only thing.” Hatred was transformed into harmony through what Sherif et al. called “pursuit of a superordinate goal.” For example, the water supply to the camp was turned off and a call went out for volunteers to find an alleged leak in the mile-long water line.

While “transforming” experiments are scarce in the published literature, ideas for ecological innovations for American society that could be carried out within the framework of a systematic research design are not difficult to imagine. To cite a few examples:

1. Introduce a “curriculum for caring” in the schools, from the elementary level on, in which students, under supervision, provide substitute care for children of working mothers, assist families in emergencies, visit the old, the sick, and the lonely, etc. Existing curriculum variations could provide ready-made controls.

2. Facilitate the transition of children from home to school by acquainting family members and school personnel with each other and by engaging them in joint activities in both school and home settings, as well as on “neutral ground,” a year or more before the child enters school.

3. Expand contemporary experiments on income maintenance (e.g., Morrill, 1974) to include assessment not only of the family’s economic behavior but parent–child activities and relations as well.

4. Induce a business enterprise to introduce flexible work schedules for families with children, enabling the parents to be at home when youngsters return from school, fall ill, etc.

My purpose in presenting the foregoing proposals here is not to advocate their implementation but, as with this article as a whole, to stimulate new, ecological directions of thought and activity in developmental research. Moreover, the aim is to expand our conceptions, not to substitute them for other, already existing and valuable approaches. Nor is there any implication that investigation at one system level is more important or logically prior to research at another. As scientists, we must work from different perspectives in different ways. A variety of approaches are needed if we are to make progress toward the ultimate goal of understanding human development in context. In pursuit of this objective, I conclude with an encomium to love, honor, and perhaps even to obey Dearborn’s Dictum, Leontiev’s Law, and a new version of Thomas’s Thesis: “Experiments created as real are real in their consequences.”

REFERENCE NOTES

AMERICAN PSYCHOLOGIST • JULY 1977 • 529
REFERENCES

